Derivative Formula (Basic Derivatives & Chain Rule) (2024)

Derivatives are a fundamental tool of calculus. The derivative of a function of a real variable measures the sensitivity to change of a quantity, which is determined by another quantity.

Derivative Formula is given as,

\[\LARGE f^{1}(x)=\lim_{\triangle x \rightarrow 0}\frac{f(x+ \triangle x)-f(x)}{\triangle x}\]

Some Basic Derivatives

\(\begin{array}{l}\large \frac{d}{dx}(c)=0\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(x)=1\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(x^{n})=nx^{n-1}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(u\pm v)=\frac{du}{dx}\pm \frac{dv}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(cu)=c\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(uv)=u\frac{dv}{dx}+v\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\frac{u}{v})=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^{2}}\end{array} \)

Chain Rule

\(\begin{array}{l}\large \frac{d}{dx}(u.v)=\frac{dv}{dx}\left ( \frac{du}{dx}.v\right )\end{array} \)

\(\begin{array}{l}\large \frac{du}{dx}=\frac{du}{dx}\frac{dv}{dx}\end{array} \)

Derivative of the Inverse Function

x(y) is the inverse of the function y(x),

\(\begin{array}{l}\large \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}\end{array} \)

Derivative of Trigonometric Functions and their Inverses

\(\begin{array}{l}\large \frac{d}{dx}(\sin (u))=\cos (u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\cos (u))=-\sin (u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\tan (u))=\sec^{2}(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\cot(u))=-\csc^{2}(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\sec(u))=\sec(u)\tan(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\csc(u))=-\csc(u)\cot(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\sin^{-1}(u))=\frac{1}{\sqrt{1-u^{2}}}\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\cos ^{-1}(u))=-\frac{1}{\sqrt{1-u^{2}}}\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\tan^{-1}(u))=\frac{1}{1+u^{2}}\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\cot^{-1}(u))=-\frac{1}{1+u^{2}}\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\sec ^{-1}(u))=\frac{1}{\left | u \right |\sqrt{u^{2}-1}}\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\csc^{-1}(u))=-\frac{1}{\left | u \right |\sqrt{u^{2}-1}}\frac{du}{dx}\end{array} \)

Derivative of the Hyperbolic functions and their Inverses

\(\begin{array}{l}\large \frac{d}{dx}(\sinh(u))=\cosh(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(\cosh(u))=\sinh(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(tanh(u))=sech^{2}(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(coth(u))=-csch^{2}(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(sech(u))=-sech(u)tanh(u)\frac{du}{dx}\end{array} \)

\(\begin{array}{l}\large \frac{d}{dx}(csch(u))=-csch(u)coth(u)\frac{du}{dx}\end{array} \)

Derivative Formula (Basic Derivatives & Chain Rule) (2024)
Top Articles
Latest Posts
Article information

Author: Reed Wilderman

Last Updated:

Views: 6340

Rating: 4.1 / 5 (52 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Reed Wilderman

Birthday: 1992-06-14

Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

Phone: +21813267449721

Job: Technology Engineer

Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.